

Exercice 1

Pour chacune des fonctions suivantes, étudier la dérivabilité et calculer la dérivée lorsqu'elle existe.

- $f: x \to \ln(\ln(x)), x > 1.$
- $-g: x \to \ln\left(e^{x^2}+1\right), x \in \mathbb{R}.$

Calculez la dérivée de f, et donnez l'équation de la tangente au graphe de f en x = 0 pour la fonction

$$x \to \frac{1}{1 + \exp(-x)}$$
, si $x \in \mathbb{R}$.

Exercice 3

Etudiez la continuité et la dérivabilité sur $\mathbb R$ de la fonction

$$x \to \begin{cases} x^x, & \text{si } x > 0\\ 1 & \text{sinon.} \end{cases}$$

Exercice 4

Étudier si les fonctions suivantes sont continues sur \mathbb{R} , dérivables sur \mathbb{R} , et de classe C^1 sur \mathbb{R} :

$$f_0(x) = \sin\frac{1}{x}$$
, si $x \neq 0$; $f_0(0) = 0$;

$$f_1(x) = \sin x \cdot \sin \frac{1}{x}, \text{ si } x \neq 0$$
 ; $f_2(0) = 0;$
 $f_2(x) = x^2 \ln(x^2), \text{ si } x \neq 0$; $f_3(0) = 0.$

$$f_2(x) = x^2 \ln(x^2), \text{ si } x \neq 0$$
 ; $f_3(0) = 0.$

Exercice 5

Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 6

Déterminer les extremums de $f: x \to x^4 - x^3 + 1$ sur \mathbb{R} .

Exercice 7

Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit dérivable sur \mathbb{R}_{+}^{*} .

Exercice 8

On considère la fonction définie sur \mathbb{R} par

$$x \to \begin{cases} \frac{\sin x}{x} & \text{si } x < 0, \\ 1 & \text{si } x = 0, \\ 1 + \frac{1}{2}x^2 & \text{si } x > 0. \end{cases}$$

- Déterminer l'ensemble des points où f est continue.
- Déterminer l'ensemble des points où f est dérivable.

Exercice 9

Dans l'application du théorème des accroissements finis à la fonction

$$f(x) = \alpha x^2 + \beta x + \gamma$$

sur l'intervalle [a,b] préciser le nombre "c" de [a,b]. Donner une interprétation géométrique.

Exercice 10

Soit $n \ge 2$ un entier fixé et $f : \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R}]$ la fonction définie par la formule suivante :

$$f(x) = \frac{1+x^n}{(1+x)^n}, \ x \geqslant 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante :

$$(1+x)^n \le 2^{n-1}(1+x^n), \ \forall x \in \mathbb{R}^+.$$

(b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a

$$(x+y)^n \le 2^{n-1}(x^n+y^n).$$

Exercice 11

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(t) = \begin{cases} e^{1/t} & \text{si } t < 0 \\ 0 & \text{si } t \geqslant 0 \end{cases}$$

- 1. Démontrer que f est dérivable sur \mathbb{R} , en particulier en t=0.
- 2. Etudier l'existence de f''(0).
- 3. On veut montrer que pour t < 0, la dérivée n-ième de f s'écrit

$$f^{(n)}(t) = \frac{P_n(t)}{t^{2n}}e^{1/t}$$

- où P_n est un polynôme.
- (a) Trouver P_1 et P_2 .
- (b) Trouver une relation de récurrence entre P_{n+1}, P_n et P'_n pour $n \in \mathbb{N}^*$.
- 4. Montrer que f est de classe C^{∞} .